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Abstract : We report here tile total synthesis of a class of C 1--~ C6 Carba-C-disaccharide, formed by the 
association between a 2-deox~yglucose as the sugar unit and a pseudo-pyranose or a pseudo-furanose as 
the carba-sugar moiety. The carba-sugar fragments were assembled from the corresponding 
dienylsilanes through a dihydrox?clation-cyclopropanalion sequence. © 1997 Elsevier Science Ltd. 

Carba-C-disaccharides such as 1 have received a great deal of attention recently, due to their potential use in 
the treatment of viral infections, diabetes and cancer (Scheme 1). 1 Their structural and conformational 
resemblance to related natural sugars suggests that they might be able to inhibit oligosaccharide processing 
enzymes, i.e. glycosidases and glycosyltransferases. 2 Their structure consists of a pseudo-sugar and a sugar unit 
linked together by one (or two) methylene groups instead of the oxygen found in the parent disaccharides. As a 
consequence, they are endowed with relatively greater stability towards glycosidase-induced hydrolysis. The 
large number of possible connections between two sugar units also implies that great potential exists for the 
discovery of specific glycosidase inhibitors. In this context, several approaches to the synthesis of C- 
disaccharides have recently appeared, illustrating some of the possible combinations mentioned above) 

We report herein the total synthesis of a class of CI--> C6 Carba-C-disaccharide I, formed by the association 
between a 2-deoxyglucose as the sugar unit and a pseudo-pyranose (2, n = 1) or a pseudo-furanose (2, n = 0) as 
the carba-sugar moiety (Scheme 1). The connection between the two fragments could be carried out through an 
aldol condensation between a glucosyl-lithium and the aldehydic function of the carba-sugar, following the 
methodology of Sina~ and Beau. 4 This approach should ensure the control of the stereochemistry at the 
anomeric centre (CI'), since this reaction is known to occur with retention of configuration at this position. The 
pseudo-sugar fragment could be assembled either from 2,5-cyclohexadienyl- or 2,4-cyclopentadienylsilanes 4 
using a dihydroxylation-cyclopropanation sequence. As the cyclopropane in 3 is activated by an ester group, we 
anticipated that a nucleophilic attack at the silicon centre would assist the ring-opening 5 leading to the required 
chain at C5, along with a new endocyclic double bond (C3-C4) which could then be further functionalized. The 
strategy could be equally applied to 5- and 6-membered ring systems. The stereochemistry of the pseudo-sugar 
unit should be controlled by the silicon group during dihydroxylation and cyclopropanation, both processes being 
known to proceed anti relative to the silicon group. 6 
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The allylsilane 5, prepared as previously reported, 7 was treated with ethyldiazoacetate in the presence of a 
catalytic amount of Cu(I)OTf-Schiff-base 8 to afford the cyclopropane 6 as a single diastereomer (Scheme 2) As 
expected, the reaction had taken place anti relative to the silicon moiety, 6 thus leading to the relative cis-C 1-C5 
configuration. 6 was then transformed into the olefin 7 in the presence of CsF (8 eq.) in DMF. 5 It must be 
emphasized that contrary to what was observed with methylene-cyclopropane, 7a electrophilic reagents such as 
NIS or NBS do not react with 6. Subsequent osmylation of 7 occurred with complete diastereocontrol, and, as 
expected, anti relative to the benzyloxy groups. The resulting diol was then protected as an acetonide and the 
ester function of 8 was converted, using standard methods, into the required aldehyde to give 9 in 58% overall 
yield from 5 
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We first decided to follow a similar approach in the cyclopentadienylsilane series but soon abandoned this 
route where was found that the Sharpless asymmetric dihydroxylation 7 did not afford the desired diol but instead 
a siloxane residue resulting from desilylation of 10. 9 Instead, we carried out the cyclopropanation of 10 first, as 
above, to produce cyclopropane 11 as a 95:5 mixture of two diastereomers (Scheme 3). Our different attempts 
to reproduce this reaction in a homochiral series 1° unfortunately failed, so we decided to carry out the whole 
sequence in racemic form with subsequent resolution of the racemic mixture alter the glycosylation. 
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Dihydroxylation of 11 with OsO 4 produced the desired diol in good yield, but with low diastereocontrol.l 1 
Protection of  the diol as the acetonide gave both diastereomers 12a-b which could be separated at this stage and 
treated independently with CsF (2 eq., 50°C) in DMF to afford the olefin 13a and 13b. We noticed that the 
cyclopropane-ring opening occurred in milder conditions with the anti isomer 12a, compared to the ~yn isomer 
12b (CsF (8 eq.), IO0°C). 12 Osmylation of 13a and 13b, occurring with complete diastereocontrol (anti relative 
to the acetonide), followed by protection of the resulting diol, produced the same pentasubstituted cyclopentane 
14 as a consequence of its C2-symmetry. Therefore, the whole sequence can be performed on the mixture of 
diastereomers 12a-b. Reduction of the ester function of 14 tbllowed by Swern oxidation of the alcohol as above 
afforded the aldehyde 15 in 35% overall yield from cyclopentadiene. 

The aldehyde 9 was then condensed with 2-deoxyglucosyllithium, generated in situ from the corresponding 
tin-intermediate 4a to afford, after aqueous workup, a mixture of three diastereomers 16a-c in a 80:15:5 ratio (IH 
NMR) (Scheme 4). The aldols 16a and 16c 13 could not be separated by chromatography and were directly 
oxidized with PDC 4a to produce the protected carba-C-disaccharide 17 in 11 steps and 22% overall yield from 
PhSiMe2t-Bu. Extensive NMR studies on 17 showed that retention of configuration at the anomeric centre had 
effectively occurred. 14 Similarly, condensation of aldehyde 15 with 2-deoxyglucosyllithium produced three aldol 
products (74% overall yield) which could not be separated and were directly oxidized to afford a 1:1 mixture 
(IH NMR) of the ketones 18a and 18b. 15 These were readily separated by flash chromatography on silica and 
obtained in enantiomerically pure form, in 15% and 13% overall yield respectively, from cyclopentadiene. 
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In summary, we have shown that our desymmetrization process affords a convenient and versatile access to 
carba-C-disaccharides, in optically pure form using a concise approach ( l l  steps) from readily available starting 
materials (cyclopentadiene or PhSiMe2t-Bu). The silicon group is a key-element playing here two major roles. It 
initially controls the diastereofacial selectivity during dihydroxylation and cyclopropanation; 6 secondly, it assists 
the cyciopropane-ring opening process. 5,7a Studies are now underway to extend this strategy to the synthesis of 
other carba-C-disaccharides, varying both the nature of the sugar unit and the substituents on the pseudo-sugar 
moiety. 
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